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Your eyes are a powerful tool for extracting patterns in data. 
The science of visualization uncovers how to optimize com-
munication and decision-making using visual displays.

Key Points

•• Human vision is astonishingly powerful, able to 
extract complex statistical information quickly from 
large arrays.

•• Data graphics can capitalize on this computing horse-
power to facilitate effective decision-making and 
communication.

•• However, some kinds of visual processing—particu-
larly comparisons—are slow and difficult. Best to 
minimize these.

•• When people read graphs, they bring to bear knowl-
edge about the world, along with specific knowledge 
about graph formats. Graphics work best when they 
respect this knowledge.

•• User-centered design offers efficient and effective 
tools to improve communication through data 
graphics.

•• By leveraging the science of data visualization, pol-
icy-makers can improve communication and 
decision-making.

Introduction

On January 13, 2009, the Securities and Exchange Commission 
issued new rules for how mutual funds are described to  

consumers in a “Summary Prospectus.” Comparing two 
investments is a demanding cognitive task, and the rules were 
intended to make this easier. It appears that considerable 
thought was devoted to deciding what information to include, 
and in what order. However, it does not appear that much 
thought was given to how consumers might process this infor-
mation. Most of the data are presented in tabular format; the 
sole exception is that a bar chart of annual returns over the 
previous 7 years is mandated—and the specifications for those 
charts are poorly designed and may not depict the most helpful 
information (Figure 1). When researchers assessed how peo-
ple used this chart, they found that viewers focused on unhelp-
ful information and relied on irrelevant data, leading to poor 
decision-making (Hüsser & Wirth, 2014).

In Figure 2, an important analysis of the economic impact 
of the proposed climate change legislation is extremely dif-
ficult to understand. The graph is cluttered; it requires con-
stant looks back and forth to a color lookup legend, and the 
bullets at right require sluggish integration of high-level con-
clusions with patterns among the data values.

The display shown in Figure 3 is used by the National 
Hurricane Center to visualize forecasted paths of a storm. 
The blue area shows a counterintuitive collection of 
forecasted paths, such that a majority of weather models 
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predict that the storm will travel through that region. That 
region grows larger as the storm approaches because of the 
increasing uncertainty in the forecasts. But many viewers 
mistakenly interpret that the storm is growing in size as it 
approaches (Padilla et al., 2018).

Is this the best we can do? In many situations, people 
make better decisions from graphical presentations than 
from verbal or tabular formats. But these visualizations 
must first be designed in a way that taps the power—and 
respects the limitations—of visual processing. When data 
visualizations are constructed well, analysis is powerful 
and communication is clear. But when designed ineffec-
tively, visualizations leave critical patterns opaque or leave 
viewers confused about how to navigate cluttered or unfa-
miliar displays. The fact that data visualizations can have 
massive effects on a viewer’s ability to analyze and under-
stand patterns means that it is crucial for decision-makers 
and communicators to understand the fundamentals of data 
design.

Who Studies the Visual 
Communication of Quantitative 
Information?

Several intersecting fields study how people translate visual 
displays into understanding and help develop practical 
guidelines for making that process more effective. In the 
social sciences, psychologists study how people extract 
data from visual images (e.g., Pinker, 1990; Shah & 
Carpenter, 1995) and how this is affected by knowledge and 
expertise (e.g., Parsons, 2018; Smallman & Hegarty, 2007; 
Tversky, 2001). Education researchers study how students 
can more effectively learn to read and reason with graphs 
(e.g., Friel & Bright, 1996; Shah & Hoeffner, 2002). In 
communications, political science, and public policy, work 
on the persuasive power of visualized data, for example, 
explores whether visually depicted information is more 
likely to persuade a climate change skeptic, compared with 
quoting numbers and statistics (Nyhan & Reifler, 2019). 

Figure 1. Examples of SEC-mandated summary prospectus performance graphs for Vanguard S&P 500 fund and BlackRock iShares 
Core S&P 500 ETF (bottom).
Source. Retrieved from the Vanguard and BlackRock corporate web sites (August 17, 2019).
Note. The two funds had very similar performance, which was expected because they are both broad index funds. However, the two figures look quite 
different. More importantly, neither allows consumers to easily figure out what an investment of, say, US$10,000 made in 2009 would be worth today. 
SEC = Securities and Exchange Commission; ETF = exchange-traded fund.



54 Policy Insights from the Behavioral and Brain Sciences 7(1) 

Health communication researchers study how to best com-
municate risk to patients who need to understand probabili-
ties of success across treatment options (e.g., Ancker et al., 
2006). Last but not least, one academic field, primarily 
made up of computer scientists and designers, specifically 
studies information visualization. This work ranges from 
developing tools that solve particular challenges for scien-
tific collaborators or the general public, psychological stud-
ies of visualization perception (Cleveland & McGill, 1985), 
understanding (Padilla et al., 2018), intuitive interactivity 
(Elmqvist et al., 2011), and engagement (Naps et al., 2002). 
The information visualization community relies increas-
ingly on empirical evaluation—both through qualitative 
and quantitative data—to validate guidelines for effective 
visualization design (Kosara, 2016).

Many practitioners also create, illustrate, and curate 
guidelines for effective presentation of data. In the past two 
decades, dozens of books have been published, with 
increasing frequency, on effective data visualization (see 
the “References” section at the end of this article). Although 
many of these are oriented toward the business community, 
their lessons are equally relevant across science, education, 

Figure 2. An example of a graph that challenges viewers’ ability to direct attention.
Source. Retrieved from https://archive.epa.gov/epa/sites/production/files/2016-07/documents/s2191_epa_analysis.pdf on August 24, 2019.
Note. CCS = carbon capture and storage.

Figure 3. A graph that violates conventional expectations about 
the meaning of shaded regions.
Source. Reproduced from Padilla et al., 2018, per CC-BY license (https://
creativecommons.org/licenses/by/4.0/).
Note. Viewers interpret the size of the region as the anticipated size of 
the hurricane, whereas it is meant to indicate the degree of uncertainty of 
the path forecast.

https://archive.epa.gov/epa/sites/production/files/2016-07/documents/s2191_epa_analysis.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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and public policy communication. Also, a rapidly growing 
community of journalists specializes in communicating 
complex stories that rely on quantitative data about  
public policy, demographic trends, or election forecasts 
(e.g., nytimes.com/section/upshot, fivethirtyeight.com,  

washingtonpost.com/news/wonk/wp/category/data- 
visualization).

Graphs in Human Vision

The Power of Vision

Visualizations can leverage the massive processing power 
of the human visual system (around half of the human 
brain; Van Essen et al., 1992), allowing rapid foraging 
through patterns in data and intuitive communication of 
those patterns to the human eye. In the table of numbers on 
the left-hand side of Figure 4, pattern-seeking requires pro-
cessing text-based numeric symbols, presenting a process-
ing bottleneck that slows you down. Simple tasks, like 
finding the highest or lowest numbers, or uncovering a 
broader spatial pattern across the high numbers, are tedious. 
But in the color-coded version next to it, these tasks are 
trivial and immediate. That is because the visual system can 
analyze patterns of a set of basic features—such as posi-
tion, length, area, or pixel intensity—in a single parallel 
analysis across an entire visual display.

Some research focuses on how to best tap this visual 
processing power. One bedrock finding is that visual fea-
tures vary in how precisely they convey data values to the 
human eye. These studies ask viewers to guess the ratio 
between two values, manipulating the features that code 
those values, and measure the average error in those esti-
mates (Cleveland & McGill, 1985; Heer & Bostock, 2010). 
Figure 5 organizes a subset of the typically tested features 
from the most precise (position) at the top to the least 
(intensity) at the bottom; each depicts a 1:7 ratio between 
the two values. The high precision of position information 
is one driver of the ubiquity of position-based visual 

Figure 4. Leveraging the visual system to detect patterns.

Figure 5. Four visual features ranked by the precision of 
judgments they afford.

www.nytimes.com/section/upshot
www.fivethirtyeight.com
www.washingtonpost.com/news/wonk/wp/category/data-visualization
www.washingtonpost.com/news/wonk/wp/category/data-visualization
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representations, such as dot plots, scatterplots, bar graphs, 
and line graphs. Although area and intensity (e.g., gray-
scale value or color saturation) are far less precise, they are 
still immensely useful for depicting “big picture” informa-
tion, as in the color-coded number grid above (Albers 
et al., 2014).

These features do not only convey individual values or 
simple comparisons between pairs of values. The human 
visual system also can analyze statistics across large collec-
tions of these values. In the natural world, compiling such 
statistics on distributions of visual features can be extremely 
useful. If there is a lot of green and brown, you are likely in 
a park; if there is a lot of light brown and blue, and a salient 
horizontal horizon line, you are likely to be on a beach. A 
plateful of cookies makes it easy to pick out which has larger 
area, and has the most chips. Figure 6 shows four types of 

patterns that might be pulled from large collections, across 
four types of visual features.

The Limits of Vision

Visual processing evolved and developed to interact with the 
natural world, not to extract numbers and statistics from arti-
ficial displays. This mismatch can cause visual illusions that 
bias our view of data (Szafir et al., 2016). The map on the 
left-hand side of Figure 7 simulates a problem that arises 
when using intensity to plot two variables at once, in the 
same spatial area. Although the two circles are of the same 
intensity, the bottom one appears darker because of its lighter 
background. This illusion likely stems from the visual sys-
tem’s reliance on background contrast to judge the bright-
ness of an object. In the natural world, this helps calibrate 

Figure 6. Examples of how the visual system can extract patterns from large collections based on different visual features.
Source. Reproduced from Szafir et al., 2016, per CC-BY license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Note. For example, for the upper left pane, the eye can immediately visually summarize the values by locating the average position of all dots, and in the 
lower right pane the eye can easily segment the values into a light group and a dark group.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 8. Legends require maintaining features in memory, which hurts performance.
Note. Try to answer which country produces more widgets, Greece or Denmark, using the graph on the left. Worse yet, try to answer the broader 
question of whether northern or southern Europe generally produces more widgets. Labeling the slices directly helps make these operations more efficient.

Figure 7. Visual illusions can distort graphical perception.
Note. Left: When identical gray circles are superimposed on a light or dark region, they appear dark or light due to luminance contrast. In this case, viewers 
would be misled into seeing the United States circle as darker than the Canada circle. The simplified version at the center plots the same circle twice, on a 
continuously changing background. Right: Parallel curves often do not appear parallel due to perception of the space between them as an object.

brightness judgments to discount ambient illumination 
(Purves et al., 2002), but in artificial data displays this causes 
systematic bias (Ware, 2013).

In the line graph on the right-hand side of Figure 7, the two 
lines form exactly the same shape, but one is vertically offset 
from the other such that the three red dotted lines are of exactly 
the same length. Yet, when calculating the difference between 
the lines by eye, that difference appears far larger for the region 
on the left relative to the region on the right. This illusion likely 

stems from the visual system’s focus on the length and width of 
objects in the world, seeing the space between the lines as an 
object that is “thick” at the bottom left and “thin” at the top 
right—effectively measuring the shortest distance between the 
curves rather than the distance measured vertically.

Finally, seeing in the natural world typically does not 
require a substantial amount of short-term memory. If you 
need to know the color or shape of an object, you can simply 
look at it, which might create an illusion that the information 
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was already stored in your head (O’Regan, 1992; Rensink, 
2000). This works when the information is close to where 
you are already looking—it is the reason that your car’s GPS 
map display is on the dashboard in front of your eyes. If it 
were on the ceiling, your limited memory would force you to 
make more effortful glances back and forth between the map 
and the view outside. In the natural environment, related 
things are usually nearby—tomatoes hang on the vines that 
grow them, and ducklings follow a parent. This is not always 
true, however; you might see a tomato on the ground and 
look for the plant from which it fell. Good visualizations 
minimize the degree to which viewers need to glance around 
between different parts of a visualization. Figure 8 shows a 
visualization that violates this principle; such legends cause 
viewers unnecessary pain.

Comparison Limitations

The visual system excels at processing many data values at 
once when those values encode basic features such as posi-
tion, area, or color saturation. As described previously, the 

visual system can even pull statistics from this analysis, 
such as the average or maximum value from a collection. 
For example, Figure 9 allows immediately locating the lon-
gest bar among the 20 total bars. The ease of extracting 
those statistics gives us confidence that we see the data in a 
powerful way—and for many operations we do. But for one 
critically important data analysis operation, our visual sys-
tem slows to a crawl.

That operation is comparison, and in many cases people 
can only do one at a time (Franconeri et al., 2012). Comparing 
one bar’s length to another (Is the left or the right bar lon-
ger?) takes a split second to process. That sounds fast, but 
doing dozens or hundreds of those comparison steps will 
take anywhere from several seconds to several minutes 
(Logan, 1994; Wolfe, 1998), including in data visualizations 
(Nothelfer & Franconeri, 2019). In Figure 9, notice how it 
takes a few seconds to find the two pairs of bars with a unique 
arrangement (tall on the left, short on the right). Imagine 
making all of the possible comparisons from a simple bar 
graph with seven bars in it. How many pairwise comparisons 
(Bar 1 to 2, 2 to 3, 1 to 3, etc.) are possible? Even this small 

Figure 9. In the top panel, which bar is the highest? That task is easy. Now, which pair is decreasing? That task is harder. The 
comparison task can be made simple by turning the differences into visual objects, as in the bottom panel.
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Figure 10. Population of the 10 largest countries in Africa.
Note. In the top panel, it is nearly impossible to compare regions. The second panel allows grouping by color, but the fact that countries from the different 
regions are not contiguous still makes the groups hard to see. The bottom panel uses color and spatial proximity to facilitate grouping by region.
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dataset allows 21 unique pairwise comparisons; with 20 bars 
the number is 190. And that count is only for pairwise com-
parisons—most data graphics have a large number of poten-
tial comparisons, and the viewer does not always know 
which ones to prioritize.

This means that seeing a graph is not like the immediate 
and effortless recognition of a face, car, or Pokemon. The 
term “reading” is more apt than seeing, because reading a 
graph is more like reading a paragraph. You construct an 
understanding based on the structure of the graph, your pre-
vious knowledge, and the questions you are trying to answer. 
A good graph design can help.

Graphs in Human Understanding

Visualization designers help viewers navigate the large num-
ber of potential visual comparisons afforded by a graph. One 
strategy depends on general-purpose mechanisms of visual 
attention to guide viewers; another strategy leverages previous 
graph experience by following a conventional format, so that 
viewers can use learned associations to extract the relevant 
comparisons. Most good designs do both of these. Sometimes, 
there is not an obvious way to guide attention effectively while 
sticking to convention; these situations often pose the toughest 
design challenges.

Guiding Attention for Effective Comprehension

One important aspect of visual processing for guiding graph 
comprehension is that vision forms groups or collections of 
objects. Patterns are automatically clustered based on prox-
imity, shared color or shape, shared orientation, falling on a 
smooth line, or forming a familiar pattern such as a square 
(Brooks, 2015). This can enable powerful visual compari-
sons; for example, we can effortlessly compare two large 

groups of plot symbols based on their having different colors 
or being close in space. In the top panel of Figure 10, compar-
ing the populations of different regions in Africa is difficult 
because the text labels and arrangement do not facilitate 
visual grouping. The middle panel uses color to group them, 
which helps somewhat. The bottom panel further strengthens 
the visual grouping, using both spatial proximity and color to 
guide attention.

Visual grouping can effectively guide viewers’ attention, 
facilitating comprehension. However, it can also lead to dis-
tortions; for example, if one data point from a group falls far 
from the others in the group, it may be missed, miscatego-
rized, or never compared to the rest of its group. This can 
present a challenge to the designer, particularly when the 
data include outliers.

Another aspect of vision for guiding graph comprehension 
is that visually salient objects attract attention (Itti et al., 
1998). Salience is the degree to which an object or region of 
space stands out from others. Salient things differ from their 
neighbors—for example, a vertical tree in a field of felled 
horizontal ones, a square candy in a pile of oval ones, or a red 
poppy in the field of green. For example, the bar for Nigeria 
is salient in all three panels of Figure 10 because it is the big-
gest. In the middle and bottom panels, it is even more salient 
because it is a blue object surrounded by yellow and orange 
objects. Designers can use visual salience to guide viewers to 
the comparisons of interest, by highlighting them. Highlighting 
can also create new visual objects that make a comparison of 
interest directly visible, as illustrated in Figure 11.

Finally, a powerful way to guide attention is using lan-
guage to tell viewers what to see. This is also illustrated in 
Figure 11. Annotating figure elements can be a great help in 
guiding viewers to the visual comparisons of interest while 
preserving their ability to verify the designer’s claims for 
themselves by inspecting the data. However, two caveats are 

Figure 11. Adding visually salient highlighting and annotation effectively guides comprehension.
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worth bearing in mind. First, locate the verbal information 
near the visual information of interest to avoid forcing view-
ers to look back and forth between the words and the visual 
information (Moreno & Mayer, 1999). Second, only a very 
limited number of things can be called out with language 
without overwhelming the viewer.

Graph Schemas

Even if a viewer has the visual machinery available to pro-
cess patterns in data, they need to have learned how to use it 
to extract and understand values from a particular graph 
design. Take the bar graph in Figure 12. You immediately 
recognize that those two bars depict the height of two sepa-
rate groups of people. The gray rectangles matter, not the 
surrounding box. Their distance from each other, and the 
brightness of each bar, is irrelevant. Each rectangle presents 
some summary (average) statistic that stands for a whole 
group. For each rectangle, the height matters but not the 
width; the top matters but not the bottom. The numbers along 
the vertical axis represent values.

Some of this knowledge has been adapted by designers 
from our general knowledge about objects in the world. 
When bricks or logs or cans are stacked up, stacks of more 
are generally taller, so graphs usually use “up” rather than 
“down” to represent more. Some graph knowledge is broadly 
shared by people with formal education and can largely be 

assumed. For example, at least one spatial dimension is usu-
ally quantitative (the other may be categorical); the size of 
each wedge in a pie graph represents a percentage of a whole; 
error bars represent variability; time usually runs left to right. 
Such knowledge is sometimes taught, but also can be picked 
up through exposure. It can exert surprisingly strong influ-
ence on the messages that we take from graphs, without our 
necessarily being aware of it.

In one study (Zacks & Tversky, 1999), viewers were 
asked to describe simple datasets that were depicted with a 
line graph or a bar graph. Their implicit knowledge told 
them that bar graphs are generally designed to highlight 
comparisons between data points, whereas line graphs are 
generally designed to highlight trends across multiple data 
points. This affected the descriptions they gave: When pre-
sented with a bar graph as in the left panel of Figure 12, 
they were likely to say things like “12-year-olds are taller 
than 10-year-olds,” rather than “Height increases with age.” 
More surprisingly, viewers presented with a line graph as in 
the right panel of Figure 12 sometimes said things like “The 
more male you are the taller you are.” (In this study, 15% of 
respondents did so.)

To understand a graph, a viewer needs to know how to 
map a visual feature to a real-world referent. To understand 
the right panel of Figure 12, viewers need to know how to 
map people’s height to the height of the points. In addition, 
they need to know how to guide attention over the graph to 

Table 1. Some Principles of Effective Graph Design.

1. When precise quantitative judgments are needed, use position or length and avoid area or intensity.
2.  Organize patterns in data onto patterns in visual features so that visual grouping by proximity, shape, size, and intensity reflects true 

grouping in the data.
3. Avoid creating visual illusions that distort data.
4. Minimize visual comparisons.
5. Minimize working memory demands.
6. Respect common conventions when you can.
7. Other things being equal, avoid obscure graph formats.
8. When you need to break with convention, try to respect broader knowledge about how values map onto position, length, and area.
9. Experiment, gather feedback, and iterate.

Figure 12. Two graphs that mismatch common expectations for bar and line graphs.
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extract relevant information. To read a bar graph such as the 
one on the left-hand side of Figure 12, viewers need to know 
how to guide attention to the y-axis to identify the real-world 
variable being plotted and to guide attention to the x-axis to 
identify what function is being plotted. If attention goes to 
those locations before going to the points themselves, inter-
pretation will be more accurate and more efficient. Viewers 
learn these aspects of how to use graphs through repeated 
experience, and sometimes through instruction.

Such organized prior knowledge goes by the label schema 
(Pinker, 1990). When you have a schema for a graph type, 
mapping visual features to real-world referents is usually 
easy. Mapping height in a bar graph to the value of the vari-
able named on the y-axis, or mapping redness onto heat in a 
weather map, is easy because we have extensive experience 
with these graph types. Graphs that are new to us are tougher, 
but we have some leverage from schemas for other domains.

In short, seeing the relevant features in a graph is not suf-
ficient to understand it. Understanding is a process that 
unfolds over multiple views, guided by attention and by 
knowledge—including knowledge about particular graph 
formats. Good designs effectively guide attention and respect 
viewers’ knowledge.

Designing for Vision and Understanding

Effective graphs cater to humans’ visual capacities and to 
their conceptual understanding. Based on the theory and data 
reviewed in the previous sections, we can offer the following 
principles for effective graph design.

Principle 9 in Table 1 merits special comment, because it 
introduces a new aspect of the design process. The first eight 
principles summarize general patterns in graph design. They 
are well supported by data, and they make theoretical sense. 
However, every dataset is different, and so is every situation 
that may need to communicate a message about a dataset. 
Often, two principles may conflict, and too many potential 
conflicts prevent sorting them all out in advance. Because 
design principles have so many potential interactions, good 
designs usually require iteration and experimentation, paired 
with feedback from people representative of the eventual 
audience (Kosara et al., 2008). Your own eyes and visual 
brain can tell you a lot about whether a graph “works.” So try 
a few variants and look carefully at them.

However, you cannot fully trust your own judgment, 
because, as the designer, you are afflicted by the curse of 
knowledge. You know what message a viewer should extract 
from your visualization, and, once you do, it is hard to simu-
late the viewpoint of someone who does not (Xiong et al., 
2019). It is impossible to turn off your own expertise, which 
makes it difficult to see through the eyes of nonexperts.

A quick series of experiments can go a long way toward 
refining a design. The experiments do not have to be elabo-
rate or formal—often, showing two or three potential designs 
to a few people each and asking them to answer the questions 

you would like a real viewer to be able to answer easily will 
do the trick. These features of the design process have been 
codified as user-centered design (Abras et al., 2004), and 
they can be very effective.

This is an exciting time to be thinking about data graph-
ics. The emerging field of data visualization, weaving 
together empirical disciplines including psychology with 
technological and esthetic disciplines, is moving fast and 
impacting our media and our communications with each 
other. This context offers great opportunity for policy-mak-
ers to facilitate better decision-making with more effective 
visual communication. Use what we know about visual 
processing to design to viewers’ strengths. Take advantage 
of their knowledge about graphs and about the world in 
general. And don’t hesitate to experiment with your designs.

Declaration of Conflicting Interests 

The author(s) declared no potential conflicts of interest with respect 
to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: SF 
acknowledges the support of NSF grant CHS-1901485.

ORCID iD 

Jeffrey M. Zacks  https://orcid.org/0000-0003-1171-3690

References

Abras, C., Maloney-Krichmar, D., & Preece, J. (2004). User-
centered design. In W. Bainbridge (Ed.), Bain encyclopedia of 
human-computer interaction (Vol. 37, pp. 445–456). SAGE.

Albers, D., Correll, M., Gleicher, M., & Franconeri, S. L. (2014). 
Ensemble processing of color and shape: Beyond mean judg-
ments. Journal of Vision, 14(10), 1056–1056. https://doi.
org/10.1167/14.10.1056

Ancker, J. S., Senathirajah, Y., Kukafka, R., & Starren, J. B. 
(2006). Design features of graphs in health risk commu-
nication: A systematic review. Journal of the American 
Medical Informatics Association, 13(6), 608–618. https://doi.
org/10.1197/jamia.M2115

Brooks, J. L. (2015). Traditional and new principles of perceptual 
grouping. Oxford University Press.

Cleveland, W. S., & McGill, R. (1985). Graphical perception and graph-
ical methods for analyzing scientific data. Science, 229(4716), 
828–833. https://doi.org/10.1126/science.229.4716.828

Elmqvist, N., Moere, A. V., Jetter, H.-C., Cernea, D., Reiterer, H., 
& Jankun-Kelly, T. J. (2011). Fluid interaction for information 
visualization. Information Visualization, 10(4), 327–340.

Franconeri, S. L., Scimeca, J. M., Roth, J. C., Helseth, S. A., & Kahn, 
L. E. (2012). Flexible visual processing of spatial relationships. 
Cognition, 122(2), 210–227. https://doi.org/10.1016/j.cogni-
tion.2011.11.002

Friel, S. N., & Bright, G. W. (1996). Building a theory of 
graphicacy: How do students read graphs? https://eric.
ed.gov/?id=ED395277

https://orcid.org/0000-0003-1171-3690
https://doi.org/10.1167/14.10.1056
https://doi.org/10.1167/14.10.1056
https://doi.org/10.1197/jamia.M2115
https://doi.org/10.1197/jamia.M2115
https://doi.org/10.1126/science.229.4716.828
https://doi.org/10.1016/j.cognition.2011.11.002
https://doi.org/10.1016/j.cognition.2011.11.002
https://eric.ed.gov/?id=ED395277
https://eric.ed.gov/?id=ED395277


Zacks and Franconeri 63

Heer, J., & Bostock, M. (2010). Crowdsourcing graphical percep-
tion: Using Mechanical Turk to assess visualization design. In 
R. Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries, & G. 
Olson (Eds.), Proceedings of the SIGCHI conference on human 
factors in computing systems (pp. 203–212). Association for 
Computing Machinery.

Hüsser, A., & Wirth, W. (2014). Do investors show an attentional 
bias toward past performance? An eye-tracking experiment on 
visual attention to mutual fund disclosures in simplified fund 
prospectuses. Journal of Financial Services Marketing, 19(3), 
169–185. https://doi.org/10.1057/fsm.2014.20

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based 
visual attention for rapid scene analysis. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 11, 1254–
1259.

Kosara, R. (2016). An empire built on sand: Reexamining what 
we think we know about visualization. In M. Sedlmair, 
P. Isenberg, T. Isenberg, N. Mahyar, & H. Lam (Eds.), 
Proceedings of the sixth workshop on beyond time and 
errors on novel evaluation methods for visualization (pp. 
162–168). Association for Computing Machinery. https://doi.
org/10.1145/2993901.2993909

Kosara, R., Drury, F., Holmquist, L. E., & Laidlaw, D. H. 
(2008). Visualization criticism. IEEE Computer Graphics 
and Applications, 28(3), 13–15. https://doi.org/10.1109/
MCG.2008.63

Logan, G. D. (1994). Spatial attention and the apprehension of 
spatial relations. Journal of Experimental Psychology: Human 
Perception and Performance, 20(5), 1015–1036. https://doi.
org/10.1037/0096-1523.20.5.1015

Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multi-
media learning: The role of modality and contiguity. Journal of 
Educational Psychology, 91(2), 358–368.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, 
R., Hundhausen, C., . . . Velázquez-Iturbide, J. Á. (2002). 
Exploring the role of visualization and engagement in com-
puter science education. In H. M. Walker (Ed.), Working group 
reports from ITiCSE on innovation and technology in computer 
science education (pp. 131–152). Association for Computing 
Machinery. https://doi.org/10.1145/782941.782998

Nothelfer, C., & Franconeri, S. L. (2019). Measures of the ben-
efit of direct encoding of data deltas for data pair relation per-
ception. IEEE Transactions on Visualization and Computer 
Graphics, 26, 311–320.

Nyhan, B., & Reifler, J. (2019). The roles of information deficits 
and identity threat in the prevalence of misperceptions. Journal 
of Elections, Public Opinion and Parties, 29(2), 222–244.

O’Regan, J. K. (1992). Solving the “real” mysteries of visual per-
ception: The world as an outside memory. Canadian Journal 
of Psychology/Revue Canadienne de Psychologie, 46(3), 461–
488.

Padilla, L. M., Creem-Regehr, S. H., Hegarty, M., & Stefanucci, J. 
K. (2018). Decision making with visualizations: A cognitive 
framework across disciplines. Cognitive Research: Principles 
and Implications, 3(1), Article 29. https://doi.org/10.1186/
s41235-018-0120-9

Parsons, P. (2018). Conceptual metaphor theory as a founda-
tion for communicative visualization design. To Appear in 
Visualization for Communication (VisComm).https://viscomm.
io/papers/metaphor.pdf

Pinker, S. (1990). A theory of graph comprehension. In R. Freedle 
(Ed.), Artificial intelligence and the future of testing (pp. 73–
126). Lawrence Erlbaum.

Purves, D., Lotto, R. B., & Nundy, S. (2002). Why we see what we 
do: A probabilistic strategy based on past experience explains 
the remarkable difference between what we see and physical 
reality. American Scientist, 90(3), 236–243.

Rensink, R. A. (2000). The dynamic representation of scenes. 
Visual Cognition, 7(1–3), 17–42.

Shah, P., & Carpenter, P. A. (1995). Conceptual limitations in com-
prehending line graphs. Journal of Experimental Psychology: 
General, 124(1), 43–61.

Shah, P., & Hoeffner, J. (2002). Review of graph com-
prehension research: Implications for instruction. 
Educational Psychology Review, 14(1), 47–69. https://doi.
org/10.1023/A:1013180410169

Smallman, H. S., & Hegarty, M. (2007). Expertise, spatial abil-
ity and intuition in the use of complex visual displays. 
Proceedings of the Human Factors and Ergonomics Society 
Annual Meeting, 51, 200–204.

Szafir, D. A., Haroz, S., Gleicher, M., & Franconeri, S. L. (2016). 
Four types of ensemble coding in data visualizations. Journal 
of Vision, 16(5), Article 11. https://doi.org/10.1167/16.5.11

Tversky, B. (2001). Spatial schemas in depictions. In M. Gattis 
(Ed.), Spatial schemas and abstract thought (pp. 79–112). MIT 
Press.

Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). 
Information processing in the primate visual system: An inte-
grated systems perspective. Science, 255(5043), 419–423. 
https://doi.org/10.1126/science.1734518

Ware, C. (2013). Information visualization: Perception for design 
(3rd ed.). Morgan Kaufmann.

Wolfe, J. M. (1998). What can 1 million trials tell us about visual 
search? Psychological Science, 9(1), 33–39. https://doi.
org/10.1111/1467-9280.00006

Xiong, C., van Weelden, L., & Franconeri, S. L. (2019). The curse of 
knowledge in visual data communication. IEEE Transactions on 
Visualization and Computer Graphics. https://doi.org/10.1109/
TVCG.2019.2917689

Zacks, J. M., & Tversky, B. (1999). Bars and lines: A study of 
graphic communication. Memory & Cognition, 27(6), 1073–
1079.

https://doi.org/10.1057/fsm.2014.20
https://doi.org/10.1145/2993901.2993909
https://doi.org/10.1145/2993901.2993909
https://doi.org/10.1109/MCG.2008.63
https://doi.org/10.1109/MCG.2008.63
https://doi.org/10.1037/0096-1523.20.5.1015
https://doi.org/10.1037/0096-1523.20.5.1015
https://doi.org/10.1145/782941.782998
https://doi.org/10.1186/s41235-018-0120-9
https://doi.org/10.1186/s41235-018-0120-9
https://viscomm.io/papers/metaphor.pdf
https://viscomm.io/papers/metaphor.pdf
https://doi.org/10.1023/A:1013180410169
https://doi.org/10.1023/A:1013180410169
https://doi.org/10.1167/16.5.11
https://doi.org/10.1126/science.1734518
https://doi.org/10.1111/1467-9280.00006
https://doi.org/10.1111/1467-9280.00006
https://doi.org/10.1109/TVCG.2019.2917689
https://doi.org/10.1109/TVCG.2019.2917689

