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Fig. 1: Demonstration of the bias toward variability for three mark types showing the same data. The red line shows the mean estimated
averages across all participants in our second experiment. The line chart (center) shows a bias of the estimated average toward higher
variability in the higher y-values. The bias is smallest when the data is shown as points equally spaced along the x-axis (left). The bias
in line charts is in the same direction as the bias of estimates of points sampled at equal intervals along the arc of the line (right).

Abstract— We investigate variability overweighting, a previously undocumented bias in line graphs, where estimates of average value
are biased toward areas of higher variability in that line. We found this effect across two preregistered experiments with 140 and 420
participants. These experiments also show that the bias is reduced when using a dot encoding of the same series. We can model
the bias with the average of the data series and the average of the points drawn along the line. This bias might arise because higher
variability leads to stronger weighting in the average calculation, either due to the longer line segments (even though those segments
contain the same number of data values) or line segments with higher variability being otherwise more visually salient. Understanding
and predicting this bias is important for visualization design guidelines, recommendation systems, and tool builders, as the bias can
adversely affect estimates of averages and trends.

Index Terms—bias, lines graph, ensemble perception, average

1 INTRODUCTION

Since William Playfair invented line graphs in 1786 [23], they have
become one of the most common data visualization types. Designers
use line graphs to visualize stocks, sensor data, machine learning met-
rics, and human vitals (e.g., heart rate). Line graphs show a continuous
variable’s change over another continuous variable, typically time, as
the changing position of a line mark.

We generally assume that visualizations, especially of effective vi-
sual encoding channels such as position, are perceived not perfectly
but without bias [5]. The popularity of line graphs may be because the
visual encoding of time series as the position of a line is considered
effective relative to other visual encoding channels, such as hue, depend-
ing on the task. However, designers should be cognizant of perceptual
biases that can lead to misinterpretation of visualizations [14, 29]. For
example, prior work demonstrates that the background color can bias
the perception of the color of marks [28], and continuous rainbow color
maps are perceived as discrete categories [17, 25].

There may be unexplored biases in line charts as well. When drawing
a line, the length of the line drawn varies not only with the duration
of the visualized time series but also with the variability of the values
(and the resulting variability of the line graph). For example, take two
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time series of regularly sampled values over the same duration. The
first value may be constant while the second value oscillates. Both
time series have the same number of values (the same duration), but in
the visualization as a line graph, the second line has a longer overall
length—we call this the arc length of the line. The arc length is the sum
of the length of all line segments. Steeper line segments are longer than
other line segments of the same length along x. The arc length of a line
affects how much visual weight a line has (how much “ink” is needed
to draw it) and how much it draws viewers’ attention [30]. Within a
single line, periods of the same length may have a longer or shorter
arc length depending on how much the line goes up and down, which
depends on the amount of variability in the visualized time series.

Estimates of average values may be biased by design features of the
marks that draw viewers’ attention, as found in prior work [13], and
increased variability in visualized times series may capture attention.
Our bottom-up attention is generally attracted to visual information
that contrasts with its surroundings [30]. Marks can vary in contrast to
the background and other elements, which dictates how capturing they
are to our attention, referred to as salience. For example, areas of a
line graph with high variability also have more ink (often in color) and
more edges, creating high contrast with the background. Therefore, we
hypothesize that average estimates in lines are biased toward areas of
line graphs that have a longer relative arc length (i.e., that have a longer
arc length for the same duration or that use more ink). Put differently,
we hypothesize that increased variability in higher values increases the
average estimate of a time series (and vice versa) in line graphs and
that the bias is consistent with the salience of the line.

We tested this hypothesis in two experiments. Our first experiment
showed that average estimates are biased toward the area of the line
that visualizes more variable data. In the second experiment, we sought
to understand the reasons for the observed bias. We hypothesized that
average estimates in line graphs are consistent with the salience of
a line. We, therefore, hypothesized that average estimates of points
drawn along the arc of a line are more consistent with average estimates
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on lines than points drawn at regular intervals along the time dimension
of a graph. In other words, the bias to variability may decrease from a
line graph encoding to a point encoding of the same data. The results
of the second experiment confirm this hypothesis, and a demonstration
of the findings is shown in Figure 1. We preregistered the experiments
on the Open Science Framework (Experiment 1 and Experiment 2) and
have made our study materials available at (OSF Link).

Although we are not the first to document that different time series
have different arc lengths, and that arc length affects aggregates [12,
21], we experimentally show the effect and reveal how much average
estimates in line graphs can be biased by variability in the time series.
Understanding this bias is important because people often use line
graphs (as one of the most common visualization types) to visually
assess whether values are, on average, above or below critical thresholds
or to estimate future trends. Our results show that variability in line
graph biases the perception of averages and, therefore, conclusions
people draw. While the variability affects audiences’ perception, it
may be an artifact of an irrelevant factor that should not affect their
conclusions. We discuss these implications and potential designs that
could reduce the observed bias.

2 RELATED WORK

Line graphs are a common visualization— especially of time series
data—in various domains [24], appearing in papers, reports, monitoring
dashboards, and visual analysis systems. They are generally considered
an effective visualization for time series data [31]. Mackinlay describes
a visualization as effective when the information it conveys is more
readily perceived than with other visualizations [18]. A visualization
is always effective only with respect to a particular task. In this paper,
the task is to estimate the average of a time series, which corresponds
to “compute derived value” in Amar et al.’s popular low-level task
taxonomy [3]. Whether a visualization is effective depends on choosing
the right visual mark and effective visual encoding channels. Position
is considered the most precise visual encoding channel [5].

However, research also demonstrates the limitations of line graphs
for various tasks (e.g., [1,2,5,6,9,11,15,33]; reviewed in [24]). Several
studies compared line charts to other encodings and found that the
efficacy of line charts depends on the task [2, 6, 11, 15]. Albers, Correll,
and Gleicher found that line graphs are best suited for identifying the
min, max, and range while less effective for average estimation [2] (see
also [6]). Studies have shown that positional encoding may be a precise
visual encoding channel, but it can produce systematic biases regarding
how averages are perceived [33] and remembered [19]. Researchers
investigated bias in composed displays with line and bar graphs [33].
When comparing two curved lines, work shows that the steepness of
the lines causes a perceptual illusion making it challenging to estimate
differences between the lines visually [5].

We are not the first to recognize that line graphs dedicate more visual
weight to steeper lines. This effect becomes critical when summarizing
large ensembles of line graphs. Heinrich and Weiskopf reduced the
salience of steeper lines in density visualizations of parallel coordinate
plots [12]. Moritz and Fisher aggregated line graphs to create density
visualizations of large time series [21]. To avoid visual artifacts of
steeper lines, they normalized each line by the arc length such that
each time series contributes equally to the density visualization. Zhao
et al. proposed an effective density computation and extended density
visualizations with interactivity [34]. However, none of these works
experimentally confirm that average position estimates in line graphs
are biased due to the increased salience.

3 EXPERIMENTS

In two experiments, we investigated the perception of average values
in line graphs. The goal of the first experiment was to determine if
the perception of averages is biased toward variability and whether we
can predict this bias. To examine one possible source of the bias, in
Experiment 2, we aimed to identify the contribution of the line encoding.
To test this, we conducted a study comparing the bias of three mark
types: 1) points equally spaced along the x-axis, or Cartesian spaced,
2) points equally spaced along the arc of the line, and 3) a line.
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Fig. 2: First 8 of 48 stimuli for Experiment 1. The stimuli included two
variability levels for each seed and conditions where the graphs were
mirrored creating stimuli with variability in the higher and lower y-values.

Fig. 3: Example stimulus. Participants can move the grabber up and
down to where they estimate the line’s average to be. Each series is
shown as a 500px by 200px graph.

3.1 Experiment 1
The first experiment aimed to determine if there was a previously
undocumented bias in perceptual line graph average estimation. We
termed this potential bias variability-overweighting, which is when
people believe that the average value of the data set is closer to the
more variable data. For example, in Figure 1 center, if a participant
were to indicate that the average value was located at the red line, they
would be incorrect. In the figure, the true average is lower, but it could
be the case that people are biased toward the more variable data.

We hypothesized that individuals would have a skewed perception
of averages toward sets of values with higher variance. High variance
increases the amount of ink in a line graph and, therefore, the visual
saliency of the line. If, in a line graph, the variance correlates with the
value plotted along the same axis (here y), then we expect people to
estimate that most values are where the high-variance data is located.

To test if variability-overweighting occurs with line graphs, in Ex-
periment 1, we showed participants line graphs of synthetic stock data
that we modified to induce increased variability. We created stimuli
that included more variability in the higher y-values and then reflected
the stimuli to create graphs with more variability in the lower y-values
(see Figure 2). We will refer to the stimuli with variability in the higher
y-values as “variability upper” and those with variability in the lower
y-values as “variability lower.” Participants were tasked with estimating
the average y-value of the stock data using a draggable line (Figure 3).
We used a 2 (variability upper vs. lower) × 2 (more vs. less variability)
within-subjects design for a total of 4 stimuli types of interest.

We generated the stimuli from 12 seeds to create 48 trials to ensure
test-retest reliability. Creating images reflected vertically allowed us
to test if variability-overweighting occurs similarly for higher or lower
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areas on the y-axis. Participants were shown 48 images in a randomized
order and estimated the average y-value for each image. We calculated
each judgment’s Euclidean distance estimation error by subtracting the
actual average from the estimated average. The direction of the error
was preserved, such that positive values indicated an overestimation of
the average value, and negative values represented an underestimation.

3.2 Experiment 2
In Experiment 2, we aimed to determine if we could influence the
degree of variability-overweighting by changing the mark type. To
test this, we replicated Experiment 1, but we encoded the data using
1) Cartesian spaced points, 2) points equally spaced along the arc of the
line, and 3) the same line encoding used in Experiment 1 (see Figure 4).

We hypothesize that by encoding the time series data as Cartesian
spaced points, we can reduce the bias toward more variable data. Each
data point is rendered as one point mark without a connection in this
encoding. Therefore, two rendered points have the same salience
regardless of their distance in y. In lines, the salience of the mark
depends on the length of the arc. We also rendered points at equally
spaced intervals along the arc (points along the arc) to simulate this
behavior in our experiment. With points along arc, the average y-
position of the points is heavily biased toward more variability since
lines between neighboring points with more different values are longer.
Therefore more points are along the arc of lines with more variability.
In this encoding, a perfectly accurate viewer cannot estimate the true
average of the underlying data series. We also included a line encoding
to replicate Experiment 1.

As in Experiment 1, we showed participants graphs of synthetic time
series. We then ask them to estimate the average using a draggable line.
We used a 3 (point along x, point along arc, line) × 2 (variability upper
vs. lower) × 2 (more variability vs. no variability) design.

We generated the stimuli types from 12 seeds to create 144 total trials.
Participants viewed 48 images of one mark type from the 144 trials,
and we calculated the error similarly to Experiment 1. We switched
to a between-subject experiment to limit the number of graphs each
participant saw and reduce the possibility of potential bias of viewing
multiple graph types.

4 STIMULI GENERATION

We generated the stimuli for both experiments with the same process.
This process used a simulation to generate realistically-looking line
charts that we add linearly-interpolated noise to. We re-scaled the series
to correct for a subtle yet important bias introduced by the noise. The
code for our stimuli generation for Experiment 1 and Experiment 2 are
available online and as supplemental material.

4.1 Experiment 1
The stimuli (with a sample shown in Figure 2) are line graphs of
randomly generated series of numbers. Each series has 120 data points.
A series is generated from a base series to which we add noise. We
generated base series from a geometric Brownian motion stochastic
process [32], a process used to generate realistic-looking stock data.
We set µ = 0 and σ = 1. We then applied a moving average over 30
points to smooth the base series. To get 120 data points in a series, we
generate 120+30 = 150 data points from geometric Brownian motion.
We scale the base series, so all values are between zero and one. To the
base series (consisting of data points basei), we added uniform random
noise (centered around 0). The amount of noise increases linearly with
the value of the base series for positive y-alignment (linear interpolation
between lowVariability and highVariability).

noisei = lowVariability× (1−basei)+highVariability×basei

dataPointi = basei +(rand()−0.5)×noisei
(1)

Low variability series have less variability (0.15) than high variability
series (0.4). We seeded the random number generator for the geometric
Brownian motion stochastic process and noise to reproduce the same
series. We curated the set of seeds to generate diverse line graphs with
different shapes.
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Fig. 4: First 8 of 144 stimuli for Experiment 2. For each seed, we included
two variability levels, three mark types, and stimuli with variability in the
higher and lower y-values.

We generated a series for negative y-alignment by mirroring the
series vertically. We mirror each series to understand whether the
average estimates may be biased toward higher and lower y-values and
counter-balance this bias in our experiments to measure bias toward
higher variability.

mirroredDataPointi = 1−dataPointi (2)

4.2 Scaling the averages

To allow for comparison across stimuli, we set the values between zero
and one. We could naively scale the generated series to [0,1], but this
would invalidate our experiment. To understand why, assume without
loss of generality that the averages of the base series are around 0.5
and that the generation procedure adds noise to larger y-values (for not
mirrored series). Therefore, the generated series are between 0 and
≥ 1 (with the exact amount depending on the noise). Therefore, if we
rescaled the data to [0,1], we would push the average values of the
series to lower y-values.

Let us assume our participants respond randomly or always estimate
the average at 0.5. In both cases, we get the same result. Since the
true averages are overall lower, we would find that estimates are biased
to be higher than the average. We believe that every experiment that
investigates bias should test its analysis with random responses. With
random responses, any observed human bias should disappear.

To overcome the issue, we scale (multiply) the averages of the low-
noise data to have the same averages as the high-noise data.

scalingFactor =
average(highNoiseData)
average(lowNoiseData)

(3)

For mirrored series, we scale by (1−average(highNoiseData))/(1−
average(lowNoiseData)). After this scaling, all stimuli with the same
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seed (and mirroring) have the same average. If we simulate an experi-
ment where participants always estimate 0.5, we find no bias toward
higher-variable areas.

4.3 Experiment 2
We use the same stimuli generation procedure as in Experiment 1 and
the same seeds. In addition to the line encoding, we created graphs with
points sampled at equal distances along the x-axis and sampled along
the arc of the lines. This design resulted in three stimuli types (lines,
Cartesian spaced points, and arc spaced points). Like in Experiment 1,
we used two—albeit different—levels of variability in the graphs (no
additional variability, and 0.4). We chose no additional variability for
the first level to understand the generated series’ baseline bias. We used
the same level of variability for the high variability series to replicate
Experiment 1. The series had 60 data points and were scaled as in
Experiment 1. Figure 4 shows example stimuli.

5 DESIGN, PROCEDURE, AND PARTICIPANTS

5.1 Design
Experiment 1: We used a 2 (variability: .15 and .4) x 2 (variability
upper vs. lower) within-subjects design. Average estimation error was
collected as the dependent variable. This design resulted in a total of
four trial types which were generated 12 times (48 total trials) to ensure
test-retest reliability.

Experiment 2: We used a 2 (variability: 0 and .4) x 2 (variability:
upper vs. lower) x 3 (mark type: line graph, Cartesian spaced points,
arc spaced points) mix-design. The between-subjects measure was
mark type, and the within-subjects conditions were variability 0/.4 and
variability upper/lower. Variability upper/lower was used as a manip-
ulation check. Mean estimation error was collected as the dependent
variable. Each participant completed the task with graphs that included
variability 0/.4 and variability upper/lower in a randomized order. The
total number of trials was the same as in Experiment 1.

5.2 Procedure
In both experiments, participants completed this study online on their
personal machines. After giving Institutional Review Board (IRB)
approved consent to participate, individuals were given three types of
instructions. The first set of instructions prompted participants to set
their browser window to 100% zoom. The second set of instructions
pertained to the task, which was:

“Experiment Instructions. Please read the following para-
graphs carefully. You will be asked questions about the infor-
mation in the paragraphs.
Scenario: Assume that you are a stock market investor. You are
investing your own money in stocks, and you want to determine
the average price of a stock over time in order to pick the best
investment.
Task: In this experiment, you will be shown graphs of stock
prices over a one-year period like the one below. Your task is
to determine the average stock price for that year.
What is the average stock price? (Click and drag the line to
indicate the average stock price)
Response: To indicate the average stock price, use your mouse
to drag the line on the chart. Move the line to where you think
the average stock price is for that year. You can readjust the
line by clicking and dragging. Once you are happy with your
judgment of the average stock price, click the next button.”

The final set of instructions was an attention check, where participants
were asked to fill in a blank with the word “stock”. The sentence
was, “During this study, you will be asked to look at graphs of _____
prices.” Following the instructions, participants completed 48 estima-
tion judgments in a randomized order. They indicated their judgments
using a horizontal slider that was superimposed on the stimuli (shown
in Figure 3) to estimate the average data value in the graphs. The trials
included text reminding the participants about the task. If participants
failed to move the slider, they would be prompted to do so and restricted

from progressing until they made their judgment. They received no
feedback as to the accuracy of their judgments.

Following the main experiment, participants answered open ended
questions about their strategy and what they thought the experiment
was about. They also reported their gender and age.

5.3 Participants
Based on the effect size calculated from pilot data, a power analysis
was conducted using G*Power, to determine an adequate sample size,
and preregistered. At an alpha of 0.05, power of 0.95, 4 predictors, and
an effect size of adjusted r-square of 0.13, the minimum number of
participants needed is 132, which we rounded to 140. For Experiment 1,
participants were 142 people from Amazon’s Mechanical Turk, with
participation criteria set to workers in the US who were 18 years of age
or older. Participants demographics were 98 male and 44 female, with
an average age of 39 (SD = 9).

For Experiment 2, participants were 420 (140 per between-subjects
group) people from Amazon’s Mechanical Turk. Of those who chose
to answer, 46% identified as female, with an average age for the whole
sample of 41 (SD = 11). IRB approval for this research was obtained
from (removed for anonymization) University’s IRB. Participants were
paid in accordance with (removed for anonymization) minimum wage.

6 RESULTS

To answer our primary analysis question, whether the perception of
averages in lines is biased toward variability and whether we can ma-
nipulate and predict this bias, we will detail the results of the two
experiments. In each experiment, we will begin with descriptive statis-
tics about estimation error. We then show the results of statistical tests
of our preregistered hypotheses. For all of the analyses, we did not
remove any participants.

Following the preregistered analysis, we detail the thematic anal-
ysis of participants’ strategies, including examining the variability-
overweighting exhibited by participants who reported using the correct
strategy. We also conducted a sensitivity analysis to determine if indi-
viduals who guessed the purpose of the study biased the results. We
conclude the analysis with model comparisons that use the average
along the arc to predict the observed biases.

6.0.1 Accuracy Calculation
We computed the error for each participant’s estimates as the difference
between the estimated average and the true average.

Error = Estimated Average−Average (4)

We also calculated whether a participant overestimates the average.
We specify that they overestimated when the estimated average is higher
than the true average of the time series data.

Overestimated =

{
Overestimated, if Error > 0
Underestimated, otherwise

(5)

To always have the high variability data at the higher y values, we
also compute a normalized average as:

Normalized Average=

{
−Average+1, if variability upper vs. lower
Average, otherwise

(6)
We similarly compute a normalized error where a positive error

indicates an estimated average toward higher variability.

6.1 Experiment 1
Descriptive statistics. As a preliminary analysis of estimation error,
we counted how many times participants over or underestimated the
average. Of the 6816 responses, 3239 (48%) were overestimated, and
3577 (52%) were underestimated (see Figure 5). Participants generally
underestimated averages.

Since our experimental data contains graphs with variability in the
upper and lower y-values, we broke down these counts by this condition
to determine whether the estimates are toward or away from the higher
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Fig. 5: Counts of the over- and under-estimations in Experiment 1, broken
down by the variability upper vs. lower condition.

variability. As shown in Figure 5, for graphs where the variability was
in the higher y values, participants overestimated 2305 (68%) trials, and
they underestimated 1103 (32%). In the condition where the variability
was in the lower y values, 934 (27%) were overestimated, and 2474
(73%) were underestimated. In both conditions, the estimation error
was consistent with the variability.

Statistical tests of preregistered hypotheses. To determine if the
findings from the descriptive statistics are robust, we conducted a sta-
tistical analysis of our preregistered hypotheses. We preregistered three
hypotheses on the Open Science Framework for the first experiment1.

H1 “Estimation error will be significantly different than zero.”

H2 “There will be significantly more estimation error for trials with
higher variability compared to lower variability.”

H3 “Estimation error will be observed in the direction of the increased
variability (i.e., positive errors will be observed when the area
of highest variability is above the average y-value and negative
errors will occur when the highest variability is lower on the
y-axis than the average.)”

To test these hypotheses, we conducted the preregistered analysis,
in which a linear regression model was fit to the data using the R
function lmer [26] with restricted maximum likelihood estimation pro-
cedures [27]. Note that we used multi-level linear regression models
to account for correlations between participants’ responses instead of
the more simplistic pre-registered linear regression models. Linear
regression assumptions were tested and met. The model included vari-
ability size (.15 vs. .4), variability position (upper vs. lower), their
interaction, and random intercepts for each participant to predict errors
in participants’ average estimations. The referents were .15, and vari-
ability in the upper y-values. The resultant model in R notation was:
Error ∼ variabilitySize∗ variabilityPosition+(1|Id).

Test of H1: estimation error will be significantly different than zero.
The results revealed a significant intercept of the model (b =−0.036,
t(6,811) = −6.6, p < .001, 95% CI [−.047,−.025]), providing evi-
dence that the absolute estimation error (3.6%) for the referent condi-
tions was meaningfully different than zero (supporting H1). This effect
can be seen in Figure 6 (left panel), which displays estimation errors
for each condition, with none of the conditions overlapping zero.

Test of H2: significantly more estimation error for trials with higher
variability. The results also revealed a significant main effect of variabil-
ity (b = −.022, t(6,811) = −6.5, p < .001, 95% CI [−.029,−.016]).
This effect can be seen in Figure 6, where there is a meaningful separa-
tion between the two variability types for the variability upper vs. lower
conditions (denoted with H2). This finding supports H2, suggesting
significantly more estimation error for trials with higher variability than
lower variability.

Test of H3: estimation error will occur in the direction of the
increased variability. There was also a significant interaction be-

1In the original pre-registration, we used the term noise rather than variability.
We updated the term here to be consistent.

tween variability .15 vs .4 and variability upper vs. lower (b = .034,
t(6,811) = 7, p< .001, 95% CI [.025, .044]). To unpack the interaction,
we ran the same model as above but with the variability in the lower
y-value graphs as the referent. This model yielded a significant effect
of variability but in the opposite direction (b = .012, t(6,811) = 3.39,
p = .001, 95% CI [.005, .018]) compared to the prior model (b = -.022).
As seen in Figure 6, errors occurred in the direction of the increased
variability, supporting H3. We found positive errors when the area of
highest variability was above the average y-value and negative errors
when the highest variability was lower on the y-axis than the average.

6.2 Experiment 2

To examine one possible source of the variability-overweighting, in
Experiment 2, our goal was to identify the contribution of the line
encoding. We predicted that there would be an interaction between
variability and the mark type, such that the effect of variability will be
smaller for graphs with points spaced along the x-axis than graphs with
points spaced along the arc and line graphs.

Descriptive statistics. Using the same methods as in Experiment 1, we
counted how many times participants were biased toward variability
(see Figure 7). Of the 6720 responses, 3724 (55%) for Point, 4226
(63%) for Line, and 4738 (71%) for Point Arc were biased toward
variability.

Statistical tests of preregistered hypotheses. To test the reliability of
the descriptive statistics, we preregistered two hypotheses on the Open
Science Framework for the second experiment.

H4 “There will be significantly more estimation error for trials with
higher variability than no additional variability.”

H5 “The least variability-overweighting will occur in graphs with
points that are equally spaced along the x-axis.”

We used a multilevel model to fit the data using the lmer pack-
age [4] in R, which is appropriate for mixed designs with between-
and within-subjects variables. The model used variability (0 and .4)
to predict normalized estimation error (testing H4). We calculated the
normalized estimation error for each condition using the absolute error
(the error is computed in the same way as in Experiment 1) when the
graph was vertically mirrored. We used normalized error rather than
error and removed the variability upper vs. lower term to reduce the
complexity of the model, which was preregistered. To evaluate H5, we
also included an interaction term between mark type and variability
and the necessary lower-order terms. Finally, we included random
intercepts for each participant. The resultant model in R notation was:
NormalizedEstimationError ∼ markType∗ variability+(1|Id). The
referents of the model were the line mark and zero variability.

Test of H4: significantly more estimation error for trials with higher
variability. Replicating Experiment 1, the model results revealed a
main effect of variability (b = 0.03, t(20,153) = 10.03, p < .001, 95%
CI [.024, .036]), indicating that graphs with more variability had greater
estimation error. Figure 8 shows that, when collapsed across the mark
types, estimation error increased by .03 from graphs with no additional
variability to .4 variability (confirming H4). The meaningful increase in
error with the more variable graphs can also be seen in Figure 6 (right
panel), which shows the impact of variability on each mark type.

Test of H5: least variability-overweighting in graphs with equally
spaced points. As shown in Figure 6 (right panel), Point (Cartesian
spaced) had the smallest change in normalized error from charts with
low to high variability (0 to .4). Our results revealed the change from
low to high variability was meaningfully larger for Line vs. Point
(b = −.023, t(20,153) = −5.45, p < .001, 95% CI [−.031,−.015]).
The change in normalized error from low to high variability was also
meaningfully larger for Point Arc vs. Point (b = .05, t(20,153) =
10.74, p < .001, 95% CI [−.031,−.015]). Point Arc showed the largest
increase in the normalized error of 5%, followed by Line (3%), and
then Point (.69%).
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Fig. 8: The meaningful main effect of variability in Experiment 2, averaged
over the mark types, including annotations describing confirmed H4. The
black bars within the density plots show 95% CIs with a mean dot.

We conducted a follow-up regression analysis to determine if the
small increase in normalized estimation error was meaningful for Point.
This analysis revealed a meaningful but small bias for Point (b = .007,
t(6,718) = 2.24, p= .025). In sum, these results support H5, indicating
that the points equally spaced along the x-axis had the least bias (.69%),
with the line (3%) and points along the arc showing greater bias (5%).

6.3 Open Responses for Experiments 1 and 2
After completing the estimation judgments, participants answered an
open-ended question about their strategies in the task. The question
was, “We are very interested in how you made your decisions about
the average stock price. Please list all the things you considered when
making your judgments.” Two raters read the responses and coded them
based on the six most common strategies to analyze these data. The
following sections report the six most frequent strategies and include
example responses. In this analysis, we identify that a small proportion
of the participants reported using the correct strategy. We conducted a
follow-up analysis to determine if those who were consciously aware
of the correct strategy displayed less variability overweighting.

Participants also reported their beliefs concerning the purpose of
the experiment to determine if any participants intentionally biased
their judgments. The question text included,“What do you think the
experiment was about?” In the second part of this section, we report
the proportion of participants who were aware of the purpose of the
study. Then we conducted a sensitivity analysis to determine if the
people who guessed the purpose of the study meaningfully impacted
the findings.

6.3.1 Reported strategies
We identified six main strategies that participants used to estimate the
average of the stock data. Using the strategy codes, we computed
inter-rater reliability scores (IRR, Cohen’s Kappa) [8] for the codes
to determine the level of agreement between the raters (shown in the
bottom row of Table 1). The average inter-rater reliability for the six
questions was .83 and ranged from .70 to .89. This range of inter-rater
reliability scores indicates a substantial level of agreement between
the two raters [20]. The codes were not mutually exclusive, and many
times participants indicated that they used several strategies, in which
case they received multiple codes. The proportion of strategies reported
in Table 1 is for the codes the two raters agreed on.

Mental averaging. The most commonly reported strategy was
mentally computing the average using visual perception. For example,
a participant wrote, “I marked the point on the graphs where it seemed
like the generalized average would fall if the points on the graph were
boiled down into numbers and you wanted to find the average of those
numbers.” Another participant described, “I tried to get a visual sense
of where the average would fall. I looked for a good mid point of
the overall graph.” Table 1 shows that this was the most commonly
reported strategy for each mark type.

Focusing on extrema. The second most common strategy was to
focus on the max and min points and select a location between those
extrema. For example, a participant wrote, “I looked at the highest and
lowest point and went with the middle.” Another example includes, “I
looked at the lowest mark and the highest mark and then the middle of
that, but looked to see if there were upper or lower trends and adjusted
accordingly to that...” Focusing on the extrema is not the most effective
strategy. It is surprising to see that, on average, roughly 17% of the
participants indicated that they incorporated the high and low points
into their average estimations.

Incorporating variability. Roughly 15% of participants reported
incorporating variability into their judgments. However, they incorpo-
rated the variability in different ways. For example, one type of strategy
included incorporating the areas with both high and low variability. For
example, a participant wrote, “I tried to find out the relatively stable
parts of the graph, these were useful when they extended over a long



Table 1: The six most reported strategies for each experiment and the proportion of participants who correctly guessed the purpose of the study.
The last column shows the inter-rater reliability score (IRR), which indicates the level of agreement between raters. IRR scores over .61 indicate
substantial agreement between raters [20].

Reported Strategy Guessed purpose
of study

Exp mental
averaging

focusing on
extrema

incorporated
variability

equal number of
points or line

below and above

equal area
below and above

beginning and
end points

variability-
overweighting

Exp 1
Line

56.74% 21.28% 21.99% 5.67% 3.55% 4.96% 2.13%

Exp 2
Line

52.42% 23.39% 17.74% 8.87% 5.65% 2.42% 4.03%

Exp 2
Points

38.13% 9.35% 10.07% 24.46% 1.44% 2.16% .72%

Exp 2
Point Arc

32.85% 18.25% 12.41% 7.30% 5.11% 1.46% 1.46%

Average 44.92% 17.93% 15.53% 11.65% 3.88% 2.77% 2.03%

IRR .83 .88 .70 .87 .89 .83

period of time. I also considered the effect of the crests and troughs
and the depth of these extreme occurrences. Using these as a metric, I
tried to estimate the average.”

In contrast, another group of participants focused more on areas
with low variability. For example, “Most of the time the stock price
comes to certain point, and jumps again or fall back, I consider the
price where it is often stable for more time.” or “It was easier to make
the average when the stock prices were not changing much and the
graph was more even. When the prices were more “jumping”, I tried
to find the phase where these trends stayed the longest and put my
average around it.” Participants who reported this type of strategy
seemed averse to variability or uncertainty, which is a well-known bias
in psychology [7, 16].

Equal number of points or line below and above. A strategy we
did not anticipate was ensuring an equal number of points or line lengths
above and below the judgment indicator. To indicate their responses,
participants drug a line on the graph. By allowing participants to place
a line directly on the graphs, participants could then easily count the
number of points above and below the line. One participant simply
wrote, “I tried to have the number of points above and below the line be
approximately equal.” Unsurprisingly, this strategy was most common
for participants who viewed graphs with points equally spaced along the
x-axis (24%). Although less common, some participants who viewed
the line encoding also used this strategy (5-8%). A participant explains,
“I tried to get half of the trend line above and half of the trend line below
the average line and where I placed it.”

Beginning and endpoints. Another suboptimal strategy was to
focus on the beginning and ending values of the time series. While
a small proportion of participants used this strategy (roughly 3%), it
is noteworthy because it reflects a misconception. For example, one
participant wrote, “I mainly looked at the stock at the beginning and
end of the year. Afterwards, I tried to make an educated guess on what
the average stock price would be.” Another person describes also being
confused about the impact of data at the end of the time series. They
wrote, “Depending on how the end of the chart looks, I draw a different
strategy. If the chart is rallying, I believe the average price is at the
low before this rally. If the chart is going down, I place it at the lowest
low there was throughout the chart.”

Equal area (correct strategy). The correct strategy was to select a
location with equal area above and below the estimated average. Only
a small number of people reported using this strategy (roughly 4%).
An example is, “I just tried to make the volume of the areas above and
below the line approximately equal. That was my only strategy. Think I
learnt it in a maths or stats course.”

As the equal-area strategy is the correct approach, we wanted to de-
termine if participants who used it showed less bias in their judgments.
To compare performance between those who used the equal-area strat-

egy to those who did not, we computed the bias for the two groups for
Experiment 2. Figure 9 shows the nine participants with the correct
strategy in the Point Arc and Line groups and the two in the Point group
compared to a distribution representing all the other strategies. Note
that there is one distribution for all people with the incorrect strategies
compared to individual distributions for those with the correct ones.
We did this to clarify that a small number of people had the correct
strategy and meaningful variation exists between them.

Taking the individual distributions from those with the correct strat-
egy as a whole compared to the distributions for those with the incorrect
strategy, we found that people with the correct strategy showed 12.7%
less bias (.028 normalized error) than those with the incorrect strategy
(.032 normalized error). The disparity between those with the correct
strategy (.021 normalized error) and without (.041 normalized error)
was most pronounced for the Line encoding with .4 variability (change
of .019 or 46% reduction). We opted not to do a statistical analysis on
these groups as they were highly unbalanced (20 participants vs. 398)
and were not equally distributed across the groups. However, visual
analysis reveals a general tendency where using the correct strategy
leads to less bias.

6.3.2 Knowledge about the experiment purpose
Several people in each experimental condition made guesses somewhat
close to the actual experiment goals in response to the question, “What
do you think the experiment was about?” For example, one person
wrote, “How people picture averages differently when there are smooth
transitions versus spikes in the graph.” and another person wrote “I
think it was about how accurate people can estimate the average of a
line and if different line conditions affect the accuracy, such as jagged
line vs. smooth line...”

In Experiment 1, three people guessed the purpose of the study, and
ten correctly guessed in Experiment 2. We conducted a sensitivity
analysis to determine if those participants biased the findings. In this
analysis, we removed the participants that relatively accurately guessed
the manipulations of the study and reran the preregistered analysis for
Experiment 2. Across all the findings, there was no meaningful impact
of removing the participants who guessed correctly. To illustrate these
effects, in Figure 10, we show the original data from Experiment 2
with density plots. Overlayed on the density plots are quantile dot
plots that show the data after removing the participants who guess
the manipulations in the study. As seen in Figure 10, where all the
distributions for each condition overlap, removing the participants did
not meaningfully impact the results.

6.4 Predictive Model
Chart authors should consider different designs if a particular line chart
is prone to bias. To help chart authors know whether a chart may be



Fig. 9: Strategy analysis for Experiment 2, where individual participants
with the correct strategy (gray background) are shown compared to the
other participants (foreground density plots). These data are broken
down by mark type and variability. The horizontal bars within the density
plots show 95% CIs with a mean dot. The dashed line denotes zero
normalized error.

biased without running their own perceptual experiments, we sought to
build a model that predicts participants’ responses. We aim to predict
the bias and average estimate only based on properties of the data we
can observe in a given line chart rather than based on the parameters
of the data generation method since the latter is typically not known.
We also chose to only use a simple model with few features (rather
than, e.g., the whole time series as input) since we are interested in the
model’s generalizability.

We hypothesize that such a model is possible. If the salience of
longer line segments drives the estimates of averages, we may be able
to predict the estimates of averages using the true average and the
average of the values along the arc—arc average for short.

To understand whether the arc average is a meaningful predictor,
we computed the Pearson correlation between the average error of
the average estimate for each stimulus to the error of the arc average
estimate. For Experiment 1, the correlation is 0.85 (p < .001), and for
Experiment 2, the correlation is 0.64 (p < .001). This suggests that the
arc average is meaningful to predict the variability overweighting bias.

To predict the estimated average we created linear regression models
that first used the average of the data points to predict participants’
responses and then a second model that included the arc average. The

Fig. 10: Sensitivity analysis for Experiment 2, in which the original data
from Experiment 2 is displayed with density plots, and the data that
excludes people who guessed the purpose of the experiment is shown
with quantile dotplots. The black bars within the density plots show 95%
CIs with a mean dot.

goal of the second model was to evaluate if the arc average accounted
for meaningfully more variability in participants’ responses than the
average of the data set alone. We then statistically compared the two
models to determine if the arc average model was a significantly better
fit, using the data from Experiments 1 and 2.

For Experiment 1, we fit a linear regression model using the average
of the data point to predict participants’ estimates. The average of
the data points meaningfully predicted participants’ responses (b = .53,
t(6814) = 51.80, p < .001) with a model adjusted r-squared of .28. For
the second model that included arc average, both the average of the data
points (b = .45, t(6813) = 39.42, p < .001) and arc average (b = .25,
t(6813) = 15.70, p < .001) meaningfully accounted for variance in
participants judgments. The second model had an adjusted r-squared
of .31. This result suggests that after accounting for the meaningful
impact of the average of the data points, for every one unit change
in arc average, participants’ judgments were biased by .25. We then
compared the two models using an ANOVA. This comparison revealed
that the second model, which included arc average, had a significantly
better fit than the first model (F(2,6813) = 246.58, p < .001).

We also completed the same sequence of model comparisons for the
data in Experiment 2 using only the data for the line stimuli. For the first
model, the impact of the true average was b = .69, t(6718) = 76.07,
p < .001, with an adjusted r-squared of .46. For the second model,
the effect of the true average (b = .39, t(6717) = 11.62, p < .001) was
larger than the impact of the arc average (b = .34, t(6717) = 9.18,
p < .001), with an adjusted r-squared of .47. This result suggests that
after accounting for the meaningful impact of the true average, for every
one unit change in arc average, participants’ judgments were biased by
.34 (compared to .25 from Experiment 1). When comparing the two
models, we found that the model that included the arc average had a
meaningfully better fit than the one that did not (F(2,6717) = 84.30,
p < .001).

Fig. 11: The two response functions of a generalized additive model
(GAM) trained on the line data from Experiments 1 and 2. The response
functions resemble linear functions, making linear models appropriate
for these data.



We then created a linear model from the data for both experiments
with three parameters: intercept (b = .14, t(13533) = 32.58 p < .001),
average (b = .40, t(13533) = 34.36, p < .001), and arc average (b =
.31, t(13533) = 21.87 p < .001), and an adjusted r-squared of .39. We
selected a linear model because we found that a more sophisticated
GAM [10] used nearly linear feature functions (Figure 11).
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Fig. 12: Predicted and estimated averages for all stimuli.

For most stimuli (90%), the model predicted the correct direction of
the bias. The predicted estimated average fits well with the estimated
averages (Figure 12). The model’s mean absolute error is .014, which
means that with values in the range of [0,1], the prediction is only off
by 1.4%. The RMSE is .019, also indicating a good fit.

7 DISCUSSION

The results of Experiment 1 (Figure 6, left) support our hypothesis that
estimation error is significantly biased toward the direction of larger
variability in data. This bias could be caused by more variability leading
to steeper line segments that use more ink and are more visually salient.
Prior work has also found that areas of higher salience in scatter plots
can bias average estimation [13]. To test this theory, we conducted
Experiment 2, using a dot plot instead of a line chart to encode the
series data. In the dot plot, the amount of salience is proportional to the
amount of data in each x-interval and independent of the steepness of
the line segment.

Experiment 2 (Figure 6, right) replicates the findings from Experi-
ment 1. The experiment additionally supports our hypothesis that we
can reduce the bias by encoding the series data as a dot plot instead of
a line chart. To simulate the higher salience of steep line segments, we
also tested a design that spaces points along the arc of a line. We found
that the line bias was significantly higher than the bias of the dot plot
but lower than the average estimation of the points along the arc. These
results support our theory that the bias is toward more visually salient
areas of the chart but cannot yet explain the full extent of the bias.

We generated the stimuli for our experiments using different levels
of variability. Since these parameters are typically unknown, it would
be impossible to model the bias in real-world applications. However, if
we assume that the bias is caused by the salience of steep line segments,
we can compute the direction of the bias directly from the average of
the points along the arc of the line. We can also estimate the magnitude
of the bias as a function of the average of the series and the average of
the points along the arc using a simple regression model (Section 6.4).
Future work could refine this model using more features.

Our experiments show that average estimates are biased toward
higher variability. We believe that we could similarly bias trend es-
timation in line graphs. For example, a line graph could have more
variability for smaller values in the first half and higher variability for
larger values in the second half. Since we found that the estimates
of averages for the first half are lower than the true average and that
estimates for the second half are higher, we can expect that a person
also perceives a more extreme increase (stronger trend) than there is.
Our experiment only investigated average estimation in isolated charts.
As such, future work must confirm that this bias exists in combined
charts. Suppose trend estimation could be biased by variability. In that
case, malicious people who can affect the variability of series could

influence decisions other people make based on trends in data, such as
in stock trading.

The results of our experiments have implications for the design of
charts in applications where people estimate the average or trend of
a series. Designers should consider whether they can replace a line
chart with a dot plot to reduce the bias. However, the dot plot design
makes the data order and the delta between consecutive points less
clear. There may also be other ways to reduce the bias, such as using
a different type of line chart that de-emphasizes steep line segments
using thinner line segments or lines with lower opacity.

We asked participants about their strategies for estimating the aver-
age and found that people used a variety of strategies, the majority of
which were incorrect. The high proportion of misconceptions observed
in participants’ strategies is concerning. We also found that those who
used the correct strategy of aiming for an equal area between the average
line and the data line seemed to be less biased (Section 6.3.1). While
we have too few people to draw firm conclusions, this insight suggests
that people may be able to learn to reduce the bias by using the correct
strategy. When we initially developed this work, we hypothesized that
the biases would be driven by visual salience, a bottom-up attentional
process. While such unconscious processes are certainly part of the
cause, these data provide some indication that strategies may play a role.
One limitation of this work is that we cannot disambiguate the effects
of visual salience and strategies. The interconnection between the two
is consistent with theories in visual attention that suggest strategies
and bottom-up processes are intrinsically interconnected, forming a
feedback loop [22, 30]. It is also possible that both the mark type and
response method bias participant strategies, which could have impacted
attention and responses. Despite these limitations, our findings point to
the possibility that visual literacy training might benefit from teaching
people to use the correct strategy.

We carefully designed the stimuli of the experiment such that sim-
ulated random responses did not show the bias we expected in real
responses (Section 4.2). We only found this subtle issue after some ini-
tial data generation and pilots and would therefore encourage everyone
who runs experiments that test human biases to test their experiments
with random data.

8 CONCLUSION AND FUTURE WORK

This paper shows that average estimates are biased toward areas of
higher salience, caused by increased variability in the visualized data.
Since this bias can affect the conclusions drawn from data, visualization
designers who create line graphs must be aware of it. This bias is not
only significant but also practically relevant. The amount of variability
in a line graph may be due to irrelevant (to the conclusions) factors, such
as inconsistencies in the data collection, such as varying sensor noise.
In the worst case, a malicious actor could introduce small amounts of
noise to mask larger changes or nudge analysts to see larger changes.

By quantifying the bias, we can consider showing viewers warnings
when we expect the bias to affect the conclusions drawn from a graph or
consider alternative visual encodings that do not have the bias shown in
this paper. For example, we showed how points instead of lines reduce
the bias. Another idea could be to reduce the salience of steep lines by
varying the opacity or line width. Alternatively, designers could con-
sider annotating graphs with averages or other visual encodings when
average estimates are needed. However, designers need to consider
potential biases that additional visual encodings could introduce.

We discussed that biased average estimates could also lead to biased
trend estimates. Future work should investigate how manipulations
of time series data visualized as line graphs affect trend estimates.
Participants in our study represent a general population of people with
some but not expert-level visualization literacy. If trend estimates
can be affected, we should also investigate whether experts such as
scientists, doctors who look at vitals, and stock traders are as affected
as the general population. An avenue for investigating this effect could
be to analyze historical data such as stocks and see whether increased
variability affected traders’ investments.
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